skip to content

Cambridge Reproduction


We are focused upon understanding the properties and functioning of the key neural populations controlling fertility in mammals; the gonadotropin-releasing hormone (GnRH) neurons and the kisspeptin neurons. Together, these cells generate the “pulse” and “surge” patterns of hormone secretion that are responsible for the initiation of puberty and the subsequent maintenance and control of reproductive function in adult males and females.

Using mouse models and the latest neuroscience approaches, we are addressing -

  • How does this neural circuitry produce the abrupt episodes of GnRH secretion that generate pules of reproductive hormone secretion?
  • How can this same circuitry generate a completely different “surge” pattern of GnRH secretion at the mid-point of the female cycle to trigger ovulation?
  • How do steroids such as estrogen and progesterone modulate this neural circuitry?

What goes wrong in this neural circuitry in conditions of infertility such hypothalamic amenorrhea and polycystic ovary syndrome (PCOS)?